EDS222 Week 8

Hypothesis Testing

November 19, 2024



Agenda

 Hypothesis testing by randomization
* Null and alternative hypotheses
 Sample statistics and sampling distributions
* P-values and rejecting the null
 Hypothesis testing In practice
e Central limit theorem
« Standard errors
* Confidence intervals
 |Interpretation
« Effect sizes
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Hypothesis testing by randomization

Sea star wasting sydrome
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Hypothesis testing by randomization

Overview

* Overall question

e Did sea star wasting syndrome incidence
decrease from 2015 to 20247
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Hypothesis testing by randomization

Key terms

Null and alternate hypotheses
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Hypothesis testing by randomization

Sea star wasting sydrome
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Hypothesis testing by randomization

Quantify uncertainty by shuffling
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Hypothesis testing by randomization
Probability of point estimate unci r the null
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Hypothesis testing by randomization

Reject or fail to reject the null?
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Hypothesis testing by randomization
Your turn

Do tax breaks incentivize solar panel installation?

B intalled Not installed
No tax break

1. Define the null and alternate hypotheses

2. Calculate the point estimate of the
sample statistic

3. Quantify the uncertainty in the sampling

Tax break distribution

4. Calculate probability of point estimate
under the null

5. Reject or fail to reject null




Hypothesis testing by randomization

Your turn

Do tax breaks incentivize solar panel installation?

B intalled Not installed
No tax break

1. Define the null and alternate hypotheses

What are Ho and Ha?
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Hypothesis testing by randomization

Your turn

Do tax breaks incentivize solar panel installation?

B intalled Not installed
No taslnaal

2. Calculate the point estimate of the
sample statistic

Draw lines from a,b,c,d in the equation
below to the corresponding parts of the
figure on the left.

difference in proportions = 2z

b




Hypothesis testing by randomization

Your turn

Do tax breaks incentivize solar panel installation?

B intalled Not installed
No tax break

3. Quantify the uncertainty in the sampling
distribution

Which R function will help?
A) rnorm() = {andowmr H'S ’onrl-.

Tax break " rma\ Ae'(’\—
B) sample@ >
C)dnormQ) ~ pre oF the norm]
fl’LoL-l:P[c, a known vector




Hypothesis testing by randomization

Your turn

Do tax breaks incentivize solar panel installation?

B intalled [ Not installed
No tax break

4. Calculate probability of point estimate

under the null

The histograms below show the results of
randomization and the red line is the observed
difference. Which figure shows the p-value in pink?
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Hypothesis testing by randomization

Applicable to regression and other models

Do sea stars reduce urchin populations?
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Hypothesis testing by randomization

Applicable to regression and other models
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Hypothesis testing by randomization

Applicable to regression and other models
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Hypothesis testing by randomization

Recap

1.

Formulate your hypotheses
Ho = no effect, Ha = some effect

Calculate point estimate
Difference in means, regression coefficient, etc

Quantify uncertainty in sampling distribution
Shuffle data, recalculate point estimate, repeat

Calculate p-value
Probability of point estimate if null is true

Reject or fail to reject the null
Isp < a?



Hypothesis testing in practice

Motivation
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Hypothesis testing in practice

Central limit theorem

The Central Limit Theorem states:

If your sample size is large enough, then the sampling
distribution for many sample statistics (difference in
proportions, regression coefficients, etc) are
approximately normal



Hypothesis testing in practice

Central limit theorem
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Hypothesis testing in practice

Central limit theorem

Try it on your own

# Roll a dice 10,000 times to get a non-normal population
# It's not even continuous!
X <- sample(l:6, le4, replace = TRUE)
ggplot(tibble(x), aes(x)) +
geom_histogram(binwidth = 1, color = "blue", fill = NA) +
theme_classic()
# Simulate the sampling distribution of the mean
# Do the following 1000 times
# 1. Sample 50 values from your non-normal population
# 2. Calculate the sample mean
mean_x <- replicate(
le3,
mean(sample(x, size = 50))
),
ggplot(tibble(mean_x), aes(mean_x)) +
geom_histogram(bins = 15, color = "blue", fill = NA) +
theme_classic()
# Looks pretty normal!



Hypothesis testing in practice

Standard errors
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Hypothesis testing in practice

Standard errors

Standard error /\
Standard deviation of the sampling statistic. ;‘;

Problem

We only get one sample! Can’t get the standard deviation of one
data point.

Solution
Someone else solves the central limit theorem for you.

GD QFO'VV\ ( é“MP\Q '\'O sE fsk’e W-&C

Note
Don’t memorize equations! Demonstration purposes only.



Hypothesis testing in practice

Standard error of the difference of means

Population Sample . Sample statistic
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Hypothesis testing in practice

Standard error of the difference of means
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Hypothesis testing in practice

Standard error of the difference of means

1. Formulate your hypotheses
Ho = no effect, Ha = some effect

2. Calculate point estimate
Difference in means, regression coefficient, etc p
C \'\U(/\(g

3. Quantify uncertainty in sampling distribution Frow

Shuffle data, recalculate point estimate, repeat 5”‘\'

Approximate sampling distribution using standard erro yo

4. Calculate p-value ol M
Probability of point estimate if null is true
2 * pnorm(-abs(observed), mean = 0, sd = se)

5. Reject or fail to reject the null
Isp < a?

\



Hypothesis testing in practice

Your turn
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adelie_biscoe <- with(penguins,

body_mass_g[species == "Adelie" &
island == "Biscoe"])
adelie_dream <- with(penguins,
body_mass_g[species == "Adelie" &
island == "Dream"])

bs diff sdeliebi e tre—d f

obs_diff <- mean(adelie_biscoe) - mean(adelie_dream)

se <- function(a, b) {

a <- na.omit(Ca)

b <- na.omit(b)

sqrt(sd(a)A2 / length(a) + sd(b)A2 / length(b))
}

se_diff <- se(adelie_biscoe, adelie_dream)

pval <- 2 * pnorm(-abs(observed_difference),
mean = 0, mesn -

=Sd = se_difference)
pval <= 2 *prormlQ,

mean
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Hypothesis testing in practice

Your turn

1. Which obs_d1iff is the difference of the means?

2. Which pval is the probability of the observed difference, if the null is
true?

3. Sketch the null distribution of the sample statistic. Indicate the
observed difference, the standard error, and the p-value.
| L—Obsetued va\\e




Hypothesis testing in practice

Standard error of a regression coefficient

Population Sample Sample coefficient
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Hypothesis testing in practice

Standard error of a regression coefficient

Call:
Im(formula = bill_length_mm ~ body_mass g, data = penguins)
/
SE S
Coefficients: l/ Z '?SG\Mq‘:(Q is Trom O

Estimatel Std. Error t value Pr(>Itl)
(Intercept) [2.690e+01) 1.269e+00 21.19 <2e-16‘§;:\\\\\
body_mass_g |4.051e-03| 2.967¢e-04
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13.65 <2e-16 *** P value



Hypothesis testing in practice

Recap

1.

Sampling statistics are approximately normally
distributed

. From the central limit theorem, we can get the

standard error of the sampling distribution from just
one sample

R will tell you the point estimate and the standard
error when you fit a model

The p-value is the probability of getting a point
estimate that many standard errors away from O



Confidence intervals

Motivation
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Confidence intervals
Recycling standard errors ¢ 6 ovel
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Confidence intervals

Interpretation

Choose the correct interpretation of the confidence interval:
“We are 95% confident the true coefficient is between 0.0035 and 0.0046.”

A. We are 95% confident the true coefficient falls in this range.

B. Theltrue coefficientyill fall in this range 95% of the time.

. This range has a 95% probability of containing the true coefficient.



Confidence intervals

Interpretation




Confidence intervals

Recap

1.

We know point estimates aren’t perfect -
confidence intervals provide a useful bounds.

. Use the standard error again, but center the

distribution on the point estimate.

Be careful with interpretation! “Confidence” refers
to the procedure, not to the probability the CI
contains the population parameter.



Summary

Could our sample statistic point estimate be explained just
by randomness?

* Hypotheses
* Ho no effect. Ha some effect. (ove.l

 |f the point estimate is improbable under the null
hypothesis, reject the null. Otherwise, fail to reject.

* Two methods for estimating null distribution
* Randomization.
* Normal approximation.

: Jen
+ An interval that we are confident contains the ¢ V>

* Confidence intervals
population parameter. %



