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Modeling the unobserved

Key points

* Problem: OLS predictions are continuous, but our
responses are O’s and 1’s

* Another problem: the OLS assumption of normal
errors is violated (see next slide)



Modeling the unobserved
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Modeling the unobserved

Key points

* The residuals fall along two parallel lines - definitely
not normal

 If you call Im() you’ll still get a line, it’ll just be a bad
line for these data. It’s your responsibility to assess!
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Link functions (logit)
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Link functions (logit)

Key points

« Goal: convert the range of probabilities [0,1] to all real numbers
|— 00, 0], so we can treat them as normal

odds =

l.e. the ratio of success to failure
1=p

e odds € [0,00]

 All positive numbers - we’re half way there

)

, log odds = log(odds) = log(
1—-p
e log odds € [—o0, 0]
 All real numbers - we got it!
» We call log odds the “logit” transformation

* The inverse of the “logit” is the “logistic”, hence logistic regression



Link functions (logit)

Definitions

* Bernoulli(p)
* A random variable that can take the value O or 1
e p is the probability of the variable being 1
e “|s distributed as”
* Describes the distribution of a random variable
* As opposed to =, which is an exact value



Link functions (logit)

Logistic regression:
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Link functions (logit)

Key points

» Instead of modeling y directly, we model the probability
of y

* That part still looks pretty OLSish (after the logit
transformation)

* This notation also describes the linear regression we’ve
seen up until now, with a few changes

* Vs distributed as a normal variable with mean u

* No transformation of i is necessary

* The uncertainty is still there even though we don’t write
it in the formula. It’s implied by the “distributed as”



Likelihood

Definitions
 PDF
* Probability density function
* The density of probability for a random variable
* Integrate it to get probability
* Likelihood
* A quantitative measure of model fit
* Has no direct interpretation in of itself

» Useful for comparing models (e.q., different
parameters)
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Likelihood

Key points

* Height of PDF tells us how likely data are given
parameters

* The height of the PDF is not the probability of x
taking a specific value!

* Probability is the integral of the PDF
e Area under the curve

* A line has no width, so there’s no area

e But the height of the PDF does tell us how likely the
data are
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Likelihood

Key points
* Likelihood is the PDF in reverse
* How likely are the parameters given the data

Ly, 0,x) = HPDF(xi,,u, o)
i

* The likelihood of our parameters (4, o) is the
product of the PDF evaluated at the values of x



Likelihood

Key points
« For given data x, the likelihood L will change as
we change the model parameters u, o

 That means there is a combination of parameters
that gives us our most likely model

e |.e.the maximum likelihood model



Likelihood

Definitions
 PMF
* Probability mass function
* Like a PDF, but for discrete variables

* Because the variable is discrete, the height of
the PMF is the probabillity that the variable
takes that exact value
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Likelihood

Key points

 The PMF of the Bernoulli has two peaks because
a Bernoulli variable can be either O or 1

e In other words, given y ~ Bernoulli(p):
 The value of the PMF aty=1isp
* The value of the PMF at y=01is 1-p
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Likelihood

Key points

* The logistic regression curve describes how p changes with respect
to x

 The likelihood of our model:
y ~ Bernoulli(p)

logit(p) = fy + pix
e |s therefore:

LBy Br-) = | | PMF(pi. x)

PMF(p;, x;) =

(P> X)) {1—m =0

* In other words, the likelihood goes up when y and p are “aligned”
(y=1, p>0.5 OR y=0, p<0.5)

« Changing f,, ; won’t change x or y, but it will change p.



Coefficient estimation
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The process for calculating
likelihood is therefore:

1. Nominate some coefficients
Po» P

2. Calculate logit(p) = fy + fix
3. Invert the logit to get p
p = logit~'(logit(p))

4. Get the PMF value for each
point (based on p and y)

5. Multiply them all together to
get the likelihood

You want the coefficients that give
you the maximum likelihood.



Coefficient estimation

Live coding example



Review

1. Modeling the unobserved
Model the underlying probabillity, not the data
directly

2. Link functions
Use a link function (logit) to transform the
parameters of a non-normal distribution (Bernoulli)

3. Coefficient estimation
Say goodbye to SSE, embrace the power of
likelihood for coefficient estimation



