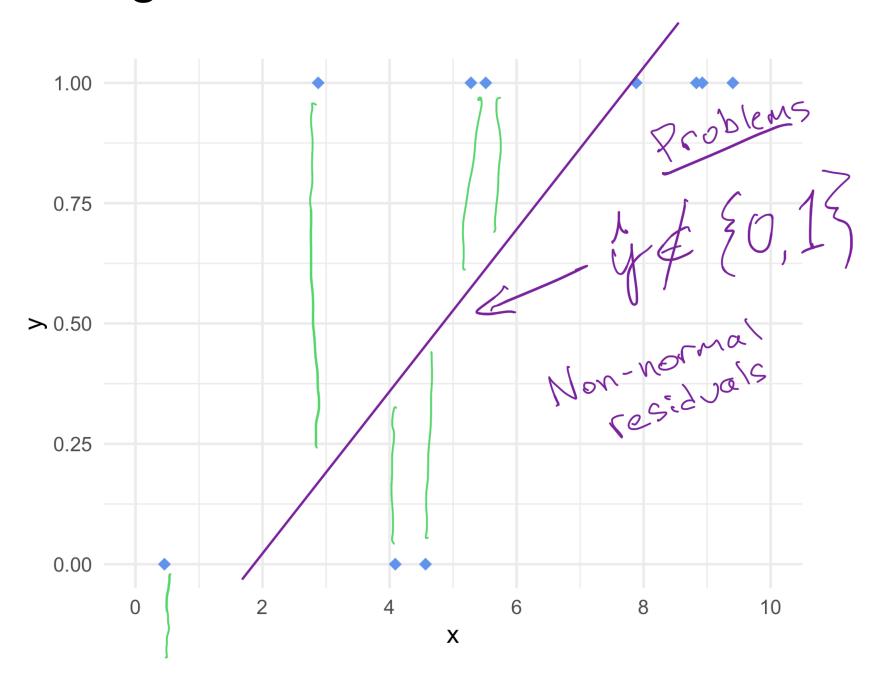
EDS222 Week 6

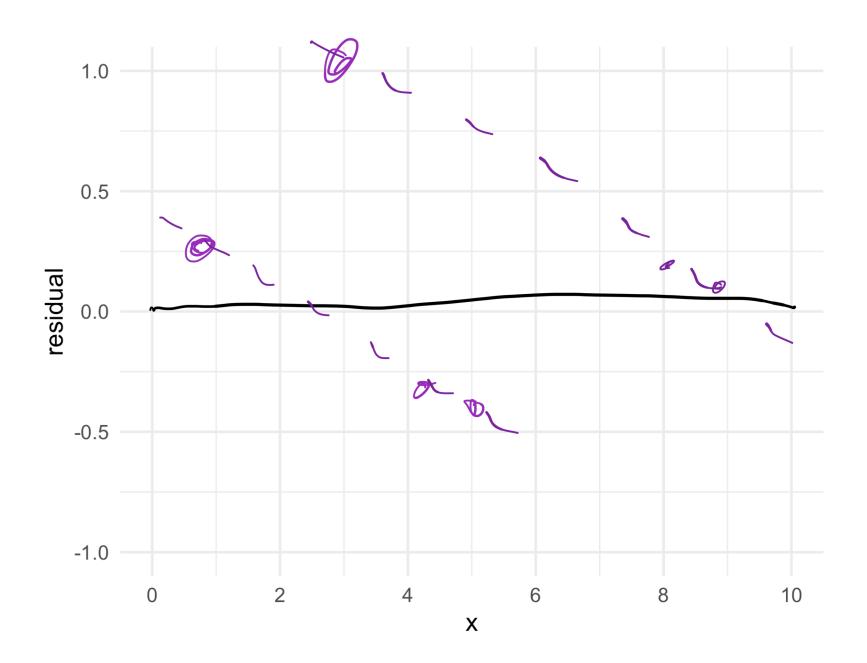
Modeling binary responses with logistic regression

how

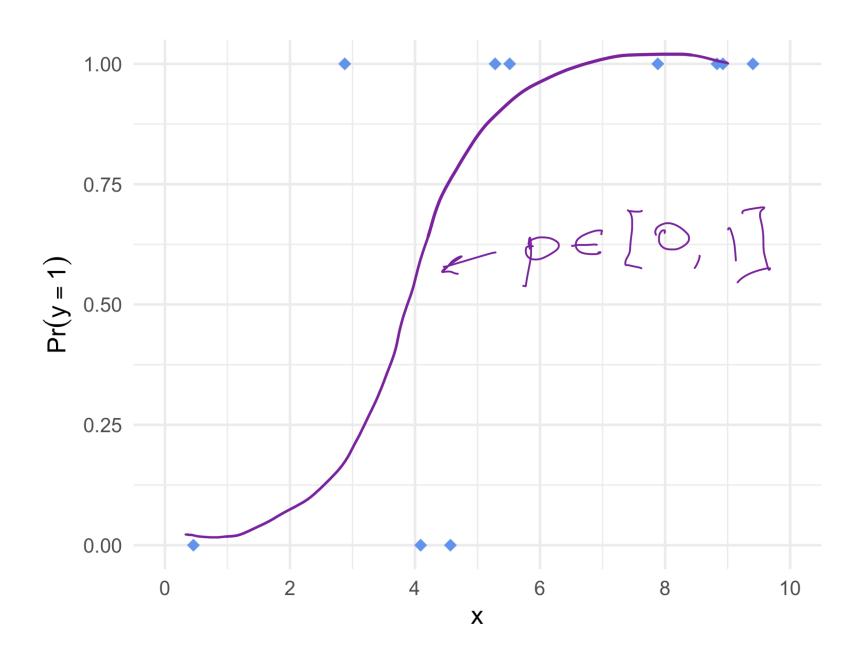
November 5, 2024

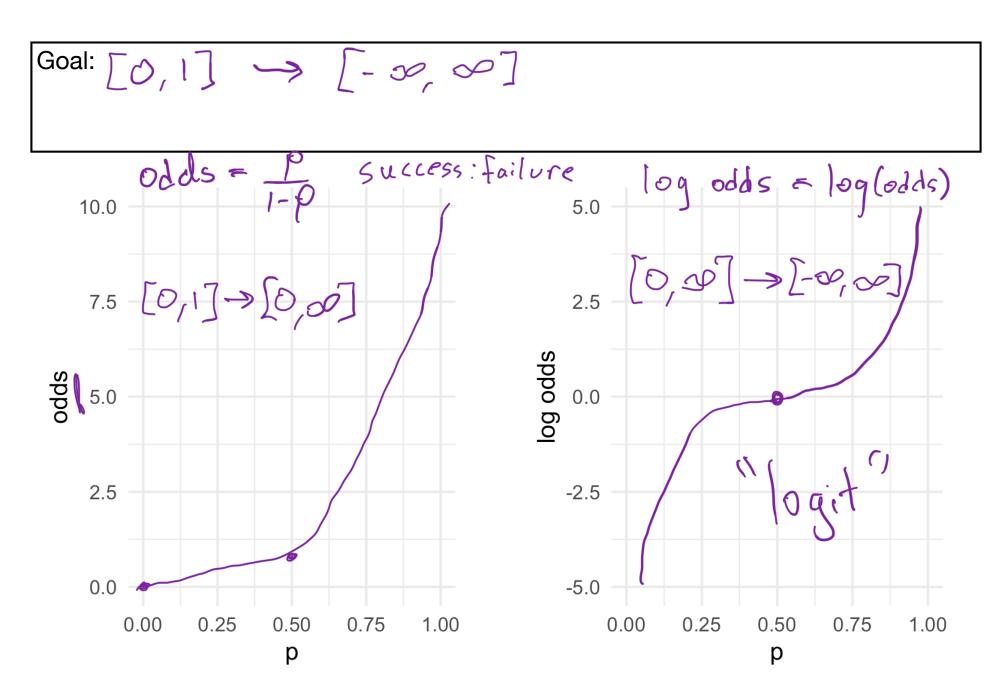


- Problem: OLS predictions are continuous, but our responses are 0's and 1's
- Another problem: the OLS assumption of normal errors is violated (see next slide)



- The residuals fall along two parallel lines definitely not normal
- If you call lm() you'll still get a line, it'll just be a bad line for these data. It's your responsibility to assess!





- Goal: convert the range of probabilities [0,1] to all real numbers $[-\infty, \infty]$, so we can treat them as normal
- odds = $\frac{p}{1-p}$ i.e. the ratio of success to failure
 - odds $\in [0,\infty]$
 - All positive numbers we're half way there
- $\log \text{ odds} = \log(\text{odds}) = \log(\frac{p}{1-p})$
 - $\log \operatorname{odds} \in [-\infty, \infty]$
 - All real numbers we got it!
- We call log odds the "logit" transformation
 - The inverse of the "logit" is the "logistic", hence logistic regression

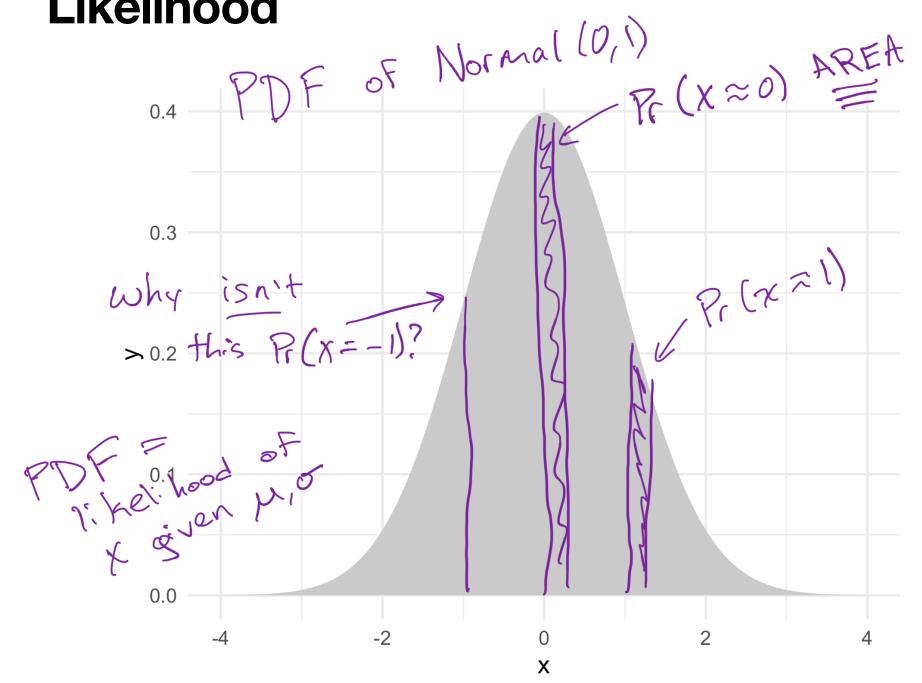
Definitions

- Bernoulli(p)
 - A random variable that can take the value 0 or 1
 - p is the probability of the variable being 1
- ~
 - "Is distributed as"
 - Describes the distribution of a random variable
 - As opposed to =, which is an exact value

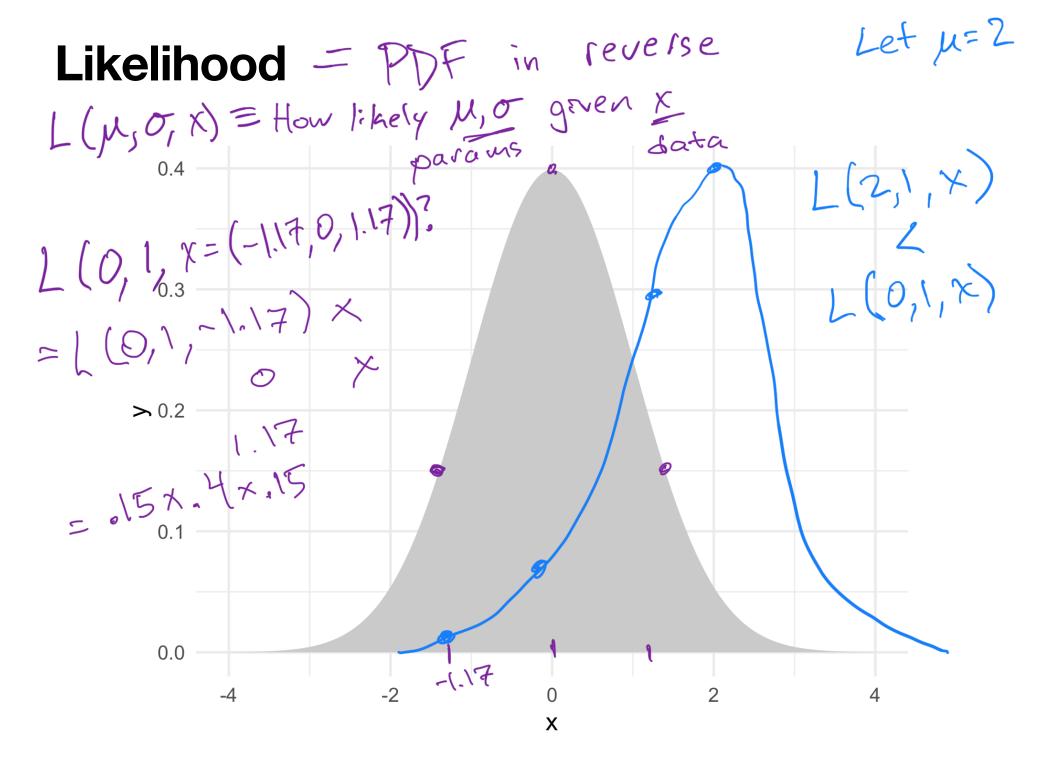
- Instead of modeling y directly, we model the probability of y
 - That part still looks pretty OLSish (after the logit transformation)
- This notation also describes the linear regression we've seen up until now, with a few changes
 - y is distributed as a normal variable with mean μ
 - No transformation of μ is necessary
- The uncertainty is still there even though we don't write it in the formula. It's implied by the "distributed as"

Definitions

- PDF
 - Probability density function
 - The density of probability for a random variable
 - Integrate it to get probability
- Likelihood
 - A quantitative measure of model fit
 - Has no direct interpretation in of itself
 - Useful for comparing models (e.g., different parameters)



- Height of PDF tells us how likely data are given parameters
- The height of the PDF is not the probability of x taking a specific value!
 - Probability is the integral of the PDF
 - Area under the curve
 - A line has no width, so there's no area
- But the height of the PDF does tell us how <u>likely</u> the data are



Key points

- Likelihood is the PDF in reverse
- How likely are the parameters given the data

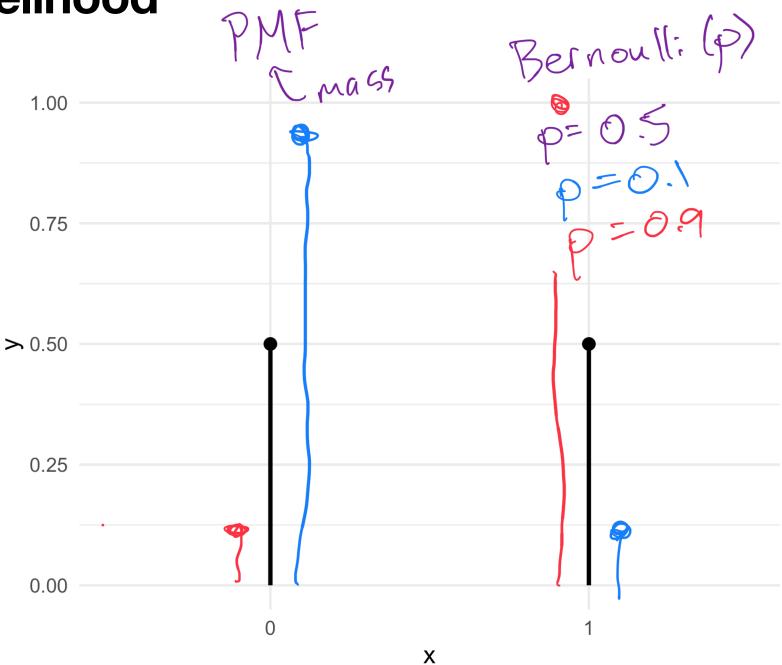
$$L(\mu, \sigma, x) = \prod_{i} PDF(x_i, \mu, \sigma)$$

• The likelihood of our parameters (μ, σ) is the product of the PDF evaluated at the values of x

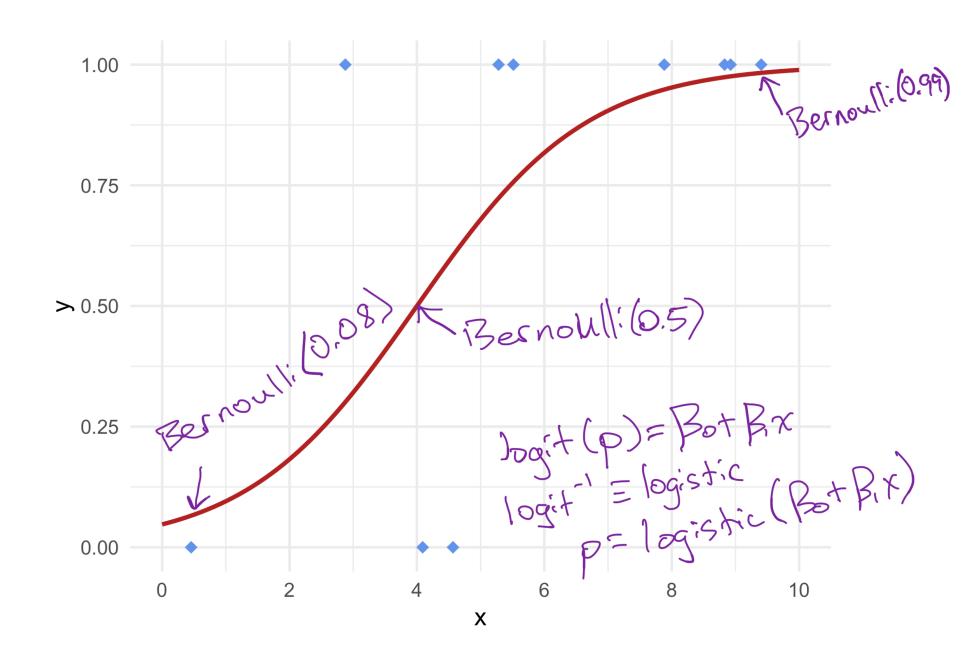
- For given data x, the likelihood L will change as we change the model parameters μ , σ
- That means there is a combination of parameters that gives us our most likely model
 - I.e. the maximum likelihood model

Definitions

- PMF
 - Probability mass function
 - Like a PDF, but for discrete variables
 - Because the variable is discrete, the height of the PMF is the probability that the variable takes that exact value



- The PMF of the Bernoulli has two peaks because a Bernoulli variable can be either 0 or 1
- In other words, given $y \sim Bernoulli(p)$:
 - The value of the PMF at y=1 is p
 - The value of the PMF at y=0 is 1-p



Key points

- The logistic regression curve describes how p changes with respect to x
- The likelihood of our model:

$$y \sim Bernoulli(p)$$

$$logit(p) = \beta_0 + \beta_1 x$$

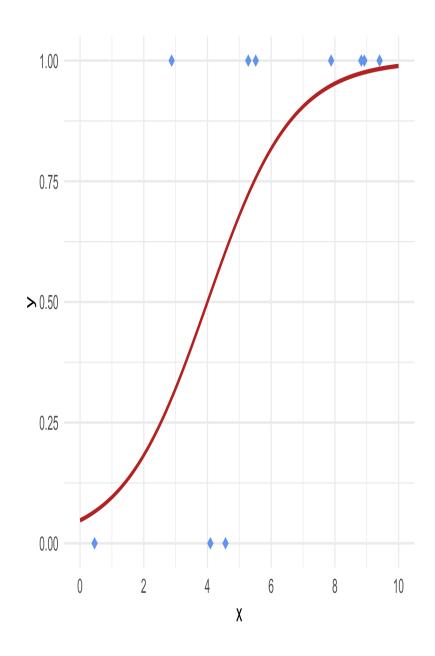
Is therefore:

$$L(\beta_0, \beta_1, x) = \prod_{i} PMF(p_i, x_i)$$

$$PMF(p_i, x_i) = \begin{cases} p_i & x_i = 1\\ 1 - p_i & x_i = 0 \end{cases}$$

- In other words, the likelihood goes up when y and p are "aligned" (y=1, p>0.5 OR y=0, p<0.5)
- Changing β_0, β_1 won't change x or y, but it will change p.

Coefficient estimation



The process for calculating likelihood is therefore:

- 1. Nominate some coefficients β_0, β_1
- 2. Calculate $logit(p) = \beta_0 + \beta_1 x$
- 3. Invert the logit to get p $p = logit^{-1}(logit(p))$
- 4. Get the PMF value for each point (based on *p* and *y*)
- 5. Multiply them all together to get the likelihood

You want the coefficients that give you the maximum likelihood.

Coefficient estimation

Live coding example

Review

1. Modeling the unobserved

Model the *underlying probability*, not the data directly

2. Link functions

Use a *link function* (logit) to transform the parameters of a non-normal distribution (Bernoulli)

3. Coefficient estimation

Say goodbye to SSE, embrace the power of likelihood for coefficient estimation