
November 5, 2024

EDS222 Week 6
Modeling binary responses with logistic regression

what how
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Modeling the unobserved

Key points 
• Problem: OLS predictions are continuous, but our 

responses are 0’s and 1’s

• Another problem: the OLS assumption of normal 

errors is violated (see next slide)
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Modeling the unobserved

Key points 
• The residuals fall along two parallel lines - definitely 

not normal

• If you call lm() you’ll still get a line, it’ll just be a bad 

line for these data. It’s your responsibility to assess!



Modeling the unobserved
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Link functions (logit)
Goal:
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Link functions (logit)

Key points 
• Goal: convert the range of probabilities [0,1] to all real numbers 

, so we can treat them as normal


•  i.e. the ratio of success to failure


• 

• All positive numbers - we’re half way there


• 


• 

• All real numbers - we got it!


• We call log odds the “logit” transformation

• The inverse of the “logit” is the “logistic”, hence logistic regression

[−∞, ∞]
odds = p

1 − p
odds ∈ [0,∞]

log odds = log(odds) = log( p
1 − p

)

log odds ∈ [−∞, ∞]



Link functions (logit)

Definitions 
• Bernoulli(p)


• A random variable that can take the value 0 or 1

• p is the probability of the variable being 1


• ~

• “Is distributed as”

• Describes the distribution of a random variable

• As opposed to =, which is an exact value



Link functions (logit)
Logistic regression: “Normal” regression:
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Link functions (logit)

Key points 
• Instead of modeling y directly, we model the probability 

of y 
• That part still looks pretty OLSish (after the logit 

transformation)

• This notation also describes the linear regression we’ve 

seen up until now, with a few changes 

• y is distributed as a normal variable with mean 

• No transformation of  is necessary


• The uncertainty is still there even though we don’t write 
it in the formula. It’s implied by the “distributed as”

μ
μ



Likelihood

Definitions 
• PDF


• Probability density function

• The density of probability for a random variable

• Integrate it to get probability


• Likelihood

• A quantitative measure of model fit

• Has no direct interpretation in of itself

• Useful for comparing models (e.g., different 

parameters)



Likelihood
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Likelihood

Key points 
• Height of PDF tells us how likely data are given 

parameters

• The height of the PDF is not the probability of x 

taking a specific value! 

• Probability is the integral of the PDF

• Area under the curve

• A line has no width, so there’s no area


• But the height of the PDF does tell us how likely the 
data are



Likelihood

Mobile User



Likelihood

Key points 
• Likelihood is the PDF in reverse

• How likely are the parameters given the data


• 


• The likelihood of our parameters ( ) is the 
product of the PDF evaluated at the values of x 

L(μ, σ, x) = ∏
i

PDF(xi, μ, σ)

μ, σ



Likelihood

Key points 

• For given data , the likelihood  will change as 
we change the model parameters 


• That means there is a combination of parameters 
that gives us our most likely model

• I.e. the maximum likelihood model

x L
μ, σ



Likelihood

Definitions 
• PMF


• Probability mass function

• Like a PDF, but for discrete variables

• Because the variable is discrete, the height of 

the PMF is the probability that the variable 
takes that exact value



Likelihood
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Likelihood

Key points 
• The PMF of the Bernoulli has two peaks because 

a Bernoulli variable can be either 0 or 1

• In other words, given :


• The value of the PMF at y=1 is p

• The value of the PMF at y=0 is 1-p

y ∼ Bernoulli(p)



Likelihood
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Likelihood

Key points 
• The logistic regression curve describes how p changes with respect 

to x

• The likelihood of our model: 




• Is therefore: 




• In other words, the likelihood goes up when y and p are “aligned” 
(y=1, p>0.5 OR y=0, p<0.5)


• Changing  won’t change x or y, but it will change p. 

y ∼ Bernoulli(p)
logit(p) = β0 + β1x

L(β0, β1, x) = ∏
i

PMF(pi, xi)

PMF(pi, xi) = {pi xi = 1
1 − pi xi = 0

β0, β1



Coefficient estimation

The process for calculating 
likelihood is therefore:

1. Nominate some coefficients 



2. Calculate 

3. Invert the logit to get p

 

4. Get the PMF value for each 

point (based on p and y)

5. Multiply them all together to 

get the likelihood

You want the coefficients that give 
you the maximum likelihood.

β0, β1
logit(p) = β0 + β1x

p = logit−1(logit(p))



Coefficient estimation

Live coding example



Review

1. Modeling the unobserved 
Model the underlying probability, not the data 
directly


2. Link functions 
Use a link function (logit) to transform the 
parameters of a non-normal distribution (Bernoulli) 

3. Coefficient estimation 
Say goodbye to SSE, embrace the power of 
likelihood for coefficient estimation


